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Executive Summary
Companies operating in the sector of Attended Home Deliveries and -Services face the challenge

of planning efficient routes to deliver to their customers while maintaining high customer service

levels. Numerous companies such as the Dutch e-grocer Picnic already tackle this challenge by

leveraging extensively studied, sophisticated methods such as a priori optimization.

This thesis investigates how companies can balance planning complexity, route efficiency and

customer service levels by leveraging optimized appointment-day offerings and a priori routes to

minimize their total travel distance in delivery operations. For this, four different strategies are

explored in a comparative analysis on synthetic data from 2,500 delivery instances across three

Dutch provinces.

In a first stage, the strategies partition customers into groups, for each of which routes are

pre-planned and different appointment-day choices are assigned. After customer preferences are

incorporated, the strategies, in a second stage, finalize daily routes to visit each customer. This is

either done by adhering to the initial visiting order from the pre-planned routes or by reoptimizing

each daily route.

The study provides support for several findings from academic literature. Further, the results

highlight the importance of companies selecting the best grouping method in the first stage of

their strategy. In contrast, reoptimizing routes is found to only add a marginal improvement to the

efficiency of routes. Overall, the study demonstrates that optimizing appointment-day offerings can

yield substantial benefits to the efficiency of routes, thereby contributing to the overall profitability

of a company.
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1 Introduction
Companies in the Attended Home Delivery (AHD) and Attended Home Service (AHS) sector face

a daunting challenge: designing efficient routes to deliver their services while adhering to various

constraints and customer requirements. Addressing such a problem typically involves a multi-

stage approach, in which decisions taken in the previous stage can greatly affect the feasibility and

economic profitability of the following decision stages (Cordeau et al., 2023, p. 550). In particular,

the optimization of AHD/AHS problems typically requires solving a two-stage problem, combining

appointment scheduling and solving a Vehicle Routing Problem (VRP) with the goal of reducing

operating cost, minimizing travel time and travel distance, while meeting customers’ requirements

(Bruck et al., 2020, p. 137). In particular, Rowell et al. (2012) find that customer requirements, total

cost, travel time and travel distance are weighed as the most important routing factors by surveyed

companies.

In increasingly complex supply chains and customer networks, companies are turning to com-

puterized planning methods to devise delivery routes and schedules, thereby outperforming previ-

ously adopted manual approaches, as showcased by Côté et al. (2024). While larger corporations

may benefit from Computerized Vehicle Routing and Scheduling (CVRS) systems, the software

tools are often less suitable and financially overwhelming for smaller companies. In fact, AHS

companies often manually plan deliveries and allocate significant resources to assess schedules

(Bruck et al., 2020, p. 137). Despite low adoption rates, studies indicate substantial benefits of

CVRS implementation, including transport cost reduction, reduction in fuel and environmental im-

pact, improved customer service and effective strategic planning (Nicolas Rincon-Garcia & Cher-

rett, 2018, p. 119). Notably, UPS’ On-Road Integrated Optimisation and Navigation (ORION)

project highlights the transformative potential of algorithmic routing solutions. ORION is esti-

mated to save UPS $300 to $400 million annually, while contributing to UPS’ sustainability efforts

by reducing driven miles and fuel consumption (Holland et al., 2017, p. 19).

Utility providers, typically operating within the AHS sector, often face challenges in accom-

modating customer scheduling preferences for installation or maintenance services (Cordeau et al.,

2023, p. 550). To overcome these challenges, companies optimize for the time windows that they

offer to their customers to choose from, a field of research that is referred to as demand manage-
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ment and time slot management. Services in the AHS sector can generally be distinguished into

ordinary (planned) and extraordinary (emergency) categories (Cordeau et al., 2023, pp. 549–550).

While some AHD/AHS problems are characterized by a dynamic customer landscape and there-

fore display demand and planning uncertainty, more ordinary AHD/AHS operations, such as oil

deliveries to customers, exhibit deterministic and more plannable demand patterns, allowing for

more predictable scheduling and routing approaches.

Addressing AHD/AHS issues often requires quick solutions for each new appointment within

a service day, thereby requiring vast resource availability such as for computation. A priori opti-

mization offers an efficient and resource-friendly alternative through the adoption of pre-planned

routes for known customer locations. These pre-planned routes specify the order of customer visits

for a delivery vehicle and can serve as a starting point for reoptimization strategies, if time permits

on the day of service (Bertsimas et al., 1990; Campbell & Thomas, 2008).

This thesis investigates how ordinary AHS providers can leverage optimized appointment-day

offerings and a priori routes to minimize their total travel distance and effectively manage the

trade-off between planning complexity, routing efficiency, and customer service. This is done by

comparing four different strategies on synthetic customer locations of a real-world company that

operates in the ordinary AHS sector, thereby closely examining the underlying decision stages of

appointment-day assignment and final route determination. This problem statement is addressed

while serving the following sub-questions:

1. What are key characteristics and advantages of scientifically validated methods for optimizing

appointment-day offerings and a priori routes in order to minimize the total travel distance?

2. How can the performance of different strategies, which optimize appointment-day offerings and

a priori routes, be accurately assessed ?

3. How do different strategies perform in terms of minimizing total travel distance and which fac-

tors influence their effectiveness?

4. Which insights can be derived from the comparative performance analysis of different strategies,

and how can these insights inform actionable strategies for balancing complexity, efficiency, and

customer service?
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As highlighted by the example of the ORION project, solving this problem is of highmanagerial

relevance for companies in the AHD/AHS sector, especially those providing ordinary, plannable

services. This high practical relevance is supported by the observation that researchers in this field

often collaborate with industry partners (Waßmuth et al., 2023, p. 812). By implementing opti-

mized scheduling and routing operations, companies may be able to reduce resource utilization

and improve their overall resource allocation. Resulting cost savings could further improve a com-

pany’s profitability. Additionally, the impact of demand- and time slot management on customer

service levels magnifies the importance of effectively balancing the trade-off between operational

complexity and routing efficiency. In other words, deciding on appointment-day offerings and de-

veloping a priori routes ultimately has implications for the level of customer service, which is why

the findings of this study provide actionable insights for guiding ordinary AHD/AHS companies

towards more efficient and customer-centric planning methods in developing delivery routes.

This study further contributes to academic literature in the related fields of demand manage-

ment, time slot management, a priori optimization and vehicle routing in several ways. First, this

thesis provides novel insights by comparing different multi-stage strategies while leveraging differ-

ent academically validated methods in an ordinary AHS context, which, to the best of my knowl-

edge, has not been addressed in academic literature to this date. Moreover, this work addresses

previous assertions made in academic literature. In particular, it investigates the impact of clus-

tering on routing performance and its implications for the trade-off between routing efficiency and

planning complexity. The analysis further provides insights into the effect of offering appointment-

days on the customer service level, addressed in Agatz et al. (2011), Bühler et al. (2016), Côté et

al. (2024), and Zhan et al. (2021), as well as on the trade-off between total cost and service level

(Agatz et al., 2011; Beheshti et al., 2015).

The remainder of this thesis is structured as follows. Section 2 entails a brief review of relevant

academic literature, addressing sub-question 1. Section 3 links the studied problem to a real-world

case and details underlying assumptions and considerations. Section 4 presents the general design

of the decision making process involved, details the methodology of the 4 studied strategies, pro-

vides a description of upper and lower bound solutions and finally presents the solving method used

in this study for solving routing problems. Section 5 lays out the experimental design by explaining

the performance evaluation of strategies, thereby addressing sub-question 2. Moreover, this section
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formulates expectations different strategies regarding efficiency, complexity and service level, and

finally details the data generation process. Section 6 explores the results of this study and with that

investigates sub-question 3. Lastly, section 7 addresses sub-question 4 by providing conclusions

and presents limitations of the study as well as suggestions for future research.

2 Literature Review
Within this section, an introduction on Attended Home Delivery and -Services characteristics and

processes is presented in chapter 2.1. Further, academic literature on demand management, VRPs

and their solution approaches are detailed in chapters 2.2, 2.3 and 2.4.

2.1 AHD and AHS

Many of the products and services that consumers order online, such as furniture and groceries,

can only be delivered to customers in their presence, which is also referred to as attended delivery.

This condition makes AHD especially challenging, as delivery failures are generally costly (Visser

& Savelsbergh, 2019; Waßmuth et al., 2023). Furthermore, to reduce the risk of delivery mishaps,

service providers usually provide customers with options to select delivery time slots (Visser &

Savelsbergh, 2019, p. 1). Service providers may thereby offer different time windows to different

customers, e.g. based on their geographical delivery zone (Agatz et al., 2011; Bruck et al., 2020;

Côté et al., 2024), or based on the customers’ risk and value profiles (Beheshti et al., 2015, p. 404).

Apart from reducing the risk of delivery failure, time-window offerings improve customer service,

as suggested by Agatz et al. (2011), Bühler et al. (2016), Côté et al. (2024), and Zhan et al. (2021).

Agatz et al. (2011) further identify the trade-off between service level and delivery cost as a key

challenge for e-grocers operating in the AHD sector. They find that, while being more convenient

for customers, narrow delivery time slots reduce routing efficiency (Agatz et al., 2011, p. 449).

Typically, as suggested by Campbell and Savelsbergh (2005) and Waßmuth et al. (2023), the

fulfillment process of AHD providers can be summarized in three main stages. Figure 1 provides an

overview of the process as suggested by Waßmuth et al. (2023, p. 804). In the first of three stages,

denoted as the order capture stage, the order is placed by the customer (Waßmuth et al., 2023,

p. 802). Customers can usually choose their service appointment to their own convenience, given

the availabilities displayed to them by the service provider. Some providers tailor the set of time-

4



window options to the customer’s shopping history or delivery location for instance. Even more so,

some providers nudge customers’ choices by limiting time slot availability or implementing fees

tied to specific time slots, all aimed at minimizing delivery costs (Bühler et al., 2016, p. 78) or in-

creasing revenues (Waßmuth et al., 2023, p. 802). Once the company has confirmed the order, stage

2 consists of the order assembly. During this second stage, the provider takes action in preparing

the delivery of the order, which typically includes order picking, sorting, and packaging (Waßmuth

et al., 2023, p. 802). The final stage of order delivery entails transporting products or services to

the customer’s home within a specified timeframe. During this phase, the service provider assigns

customers to vehicles and maps out delivery routes, a process that can be represented as a Vehicle

Routing Problem (VRP) (Waßmuth et al., 2023, p. 802).

Figure 1: AHD process according to Waßmuth et al. (2023, p. 804)

Bruck et al. (2020) define AHS as ”service delivery systems in which a supplying company

and a customer agree on a time window during which the customer will be home and the service

will be performed” (Bruck et al., 2020, p. 137). They further describe AHS as the combination

of two stages. In the initial phase, called the booking process, customers reserve a service within

the available time slots displayed by the company. In the service execution stage, the distribution

company dispatches technicians to the customers’ locations to carry out the services (Bruck et al.,

2020, p. 140).

As opposed to the two stages described in Bruck et al. (2020, p. 140), it should be acknowl-

edged that AHS providers can incorporate an intermediate order assembly stage as well, as it was

described for AHD providers by Waßmuth et al. (2023, p. 802). This stage becomes crucial, par-

ticularly for service providers that also need to provide parts or goods as part of their services. For

instance, companies that deliver furniture to their customers combine delivery and service, which

is why there is a need for these companies to handle tasks such as supplying goods, managing
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warehouses, or loading trucks.

2.2 Demand Management in AHD

Demand management can be beneficial to the profits of companies in the AHD sector in two main

ways (Waßmuth et al., 2023, p. 801). Waßmuth et al. (2023, p. 801) assert that demandmanagement

can amplify a company’s revenue by means of prioritizing high-value customers or by expanding

the company’s customer base, enabled by better resource and capacity utilization. On the other

hand, demand management can also boost company profits through cost savings that result from a

more efficient order-to-delivery process (Waßmuth et al., 2023, p. 801). Bühler et al. (2016, p. 79)

contend that the demand management of AHS providers is mainly motivated by cost reduction

in the service delivery. The authors assert that, while revenue is generated within the first stage

of order capture in AHS settings, service providers must anticipate delivery routing cost while

handling demand management decisions in order to maximize profits (Bühler et al., 2016, p. 89).

Demand management is a field of research that is especially relevant to the first stage of order

capture, as it aims to increase revenue. Generally speaking, ”demandmanagement for AHD aims to

generate customer demand, at the same time, shape it in a way that benefits the fulfillment process”

(Waßmuth et al., 2023, p. 802). Waßmuth et al. (2023) provide an extensive review of the current

literature revolving around demand management in the AHD sector. In that, the authors outline

a planning framework and further distinguish three planning levels, encompassing the strategic,

tactical and operational levels, as well as two levers, namely offering and pricing, through which

the profitability of a company could be enhanced. Further, Bühler et al. (2016, p. 79) argue that

incentives such as pricing that are strategically placed during the booking process, can occur in a

static or dynamic way.

While strategic and tactical decisions occur before the first stage of order capture, the opera-

tional decision-making arises within that stage, in which customer demand is being communicated

to and captured by the provider (Waßmuth et al., 2023, p. 804). For instance, Visser and Savels-

bergh (2019) propose a two-stage stochastic programming formulation, which the authors refer to

as Strategic Time Slot Management (STSM), while Waßmuth et al. (2023, pp. 808–809) classify

the studied problem as tactical offering by the definition layed out in their literature review pa-

per. Similar to the benefits of demand management addressed in Waßmuth et al. (2023), Visser
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and Savelsbergh (2019) contend that while STSM reduces the quantity of time slots displayed to

customers to choose from, it generally enables more cost effective operations. Furthermore, Agatz

et al. (2011) investigate a Time Slot Management Problem (TSMP) of tactical nature, in which

a set of time-slot offerings needs to be selected for the different service regions, while ensuring

an acceptable level of customer service. In their suggested method, time slots are geographically

allocated before the demand of customers is known. Based on Waßmuth et al. (2023)’s classifica-

tion, this thesis incorporates operational offering decisions, in which service options presented to

customers during the order capture process must be determined (Waßmuth et al., 2023, p. 806).

2.3 Vehicle Routing Problems

In this subsection, an overview of VRPs and their derivatives that can be considered most relevant

to this thesis, is provided. After discussing the relevance of the TSMP and demand management,

which are related to the first stage of order capture in the AHD/AHS process, this thesis also focuses

on the stage of order delivery, which usually entails solving a routing problem (Bühler et al., 2016;

Waßmuth et al., 2023).

2.3.1 VRPs and their Derivatives

The Vehicle Routing Problem (VRP) made its first appearance in Dantzig and Ramser (1959) un-

der the name of the Truck Dispatching Problem, described as a ”generalization of the Traveling

Salesman Problem (TSP)” (Dantzig & Ramser, 1959, p. 80).

In a simple VRP, a depot provides goods to a certain number of customers. A fleet is re-

sponsible for transporting these goods to geographically dispersed customer locations, given a set

of constraints. These constraints may for instance include capacity constraints as well as time-

window constraints. Each route of a VRP must start and end at a depot location, as depicted in the

exemplary VRP diagram in Figure 2. In this diagram, every node symbolizes a customer location,

interconnected by lines and arrows indicating the sequence of the corresponding route. Therewhile,

the main objective of a VRP model is to minimize the total transportation cost, where the trans-

portation cost can be assumed to be proportional to the vehicle’s travel path. In other words, a

shorter travel path will yield lower transportation cost through a reduction in fuel consumption and

driver’s working time (Zhang et al., 2022, pp. 195–197).

Since its first appearance in 1959, the VRP has been studied extensively in research, in many
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different variations of the initial problem. Reviewing relevant academic literature, Zhang et al.

(2022) delve into the model description and solution methods of derivative types of the vehicle

routing problem, including the Capacitated Vehicle Routing Problem (CVRP), Vehicle Routing

Problem with Time Windows (VRPTW) and Dynamic Vehicle Routing Problem (DVRP).

Bruck et al. (2020, p. 140) assert that for most AHS problems, creating routing plans for tech-

nicians can be modeled as a VRPTW. Similarly, this thesis is specifically tailored to AHD/AHS

providers which offer planned services to their customers and therefore deliver these services within

given time windows. In particular, this work explores the impact of offering appointment-days to

customers and investigates different strategies on how these offerings can best be assigned to cus-

tomers. Considering this objective, the VRPTW and the Time Window Assignment Vehicle Rout-

ing Problem (TWAVRP) are of special interest for this thesis and are introduced in the following.

Figure 2: VRP diagram example

2.3.2 Vehicle Routing Problem with Time Windows

The Vehicle Routing Problem with TimeWindows (VRPTW) extends the VRP by imposing a con-

straint that mandates the start of each service at customer locations within specified time windows.

In academic literature, this problem is frequently differentiated into two categories: VRPTW with

hard timewindows (VRPHTW), where timewindowsmust be strictly adhered to, andVRPTWwith

soft time windows (VRPSTW), allowing for violations of soft time windows with the payment of

suitable penalties (Beheshti et al., 2015, p. 402). Further derivatives of the VRPTW include prob-

lems with multiple time windows and problems with fuzzy time windows (Beheshti et al., 2015,

p. 403). Useful applications of the VRPTWencompass bank deliveries, postal deliveries and school
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bus routing, among others, as pointed out by Bräysy and Gendreau (2005a, p. 105).

In VRPTW, distributors typically want to maximize customer satisfaction while minimizing

the total transportation cost at the same time. However, there is a trade-off between customer

satisfaction and distribution cost, which causes the cost to increase when maximizing customer

satisfaction, as pointed out by Beheshti et al. (2015, pp. 402–404). Thus, the authors design and

solve a multi-objective VRPTW in order to arrive at an appropriate trade-off between distribution

cost and customer satisfaction. In their case study, the distributor proposes a set of non-overlapping

time windows and the customers prioritize these delivery time windows. Routing is then performed

while incorporating customer preferences. In fact, this set of constraints makes the studied problem

amulti-objective Vehicle Routing ProblemwithMultiple Prioritized TimeWindows (VRPMPTW).

Rasmussen et al. (2012) solve a HomeCare Crew Scheduling Problem (HCCSP), which generalises

the VRPTW in the setting of home care services. Similar to Beheshti et al. (2015), the authors

implement a multi-criteria objective function, minimizing the overall operational costs while max-

imizing the service level. This reflects the importance of maintaining a certain service level while

optimizing for cost in delivery or transportation in a vehicle routing problem. Highlighting the rel-

evance of VRPTW and derivatives of this VRP type in the home care and home health care sector,

Liu et al. (2019) address a home-caregiver scheduling and routing problem with stochastic travel

and service times, which can, according to the authors, be viewed as a special Multi-Depot Vehicle

Routing Problem with Time Windows (MDVRPTW) with stochastic travel and service times. In

this case, multi depot refers to the different home locations of the caregivers, given that each of

their individual routes starts and ends at their personal home location.

2.3.3 Time Window Assignment Vehicle Routing Problem

In practical scenarios, retailers heavily rely on pre-determined time windows for operational tasks

like inventory management and personnel scheduling. The Time Window Assignment Vehicle

Routing Problem (TWAVRP) addresses this need through a two-stage approach. Initially, time

windows are assigned to each customer before their demand is known. Subsequently, after customer

demand is revealed for each day of the time period, vehicle routes are constructed while adhering

to the assigned time windows from the first stage (Spliet & Gabor, 2015, p. 379).

Spliet and Gabor (2015) solve a variant of TWAVRP referred to as the discrete TWAVRP (DT-
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WAVRP). Unlike TWAVRP, DTWAVRP involves selecting a single time window from a finite set

of candidate timewindows for each customer, instead of using continuous timewindows. Addition-

ally, the authors propose approximating the probability distributions of customer demands with a

finite set of possible demand scenarios. They highlight that, particularly when considering multiple

scenarios, DTWAVRP essentially entails solving several instances of the Vehicle Routing Problem

with Time Windows (VRPTW), each corresponding to a distinct scenario and interconnected by

the choice of time windows (Spliet & Gabor, 2015, pp. 379–380). Building on Spliet and Gabor

(2015), a recent study carried out by Côté et al. (2024) tackles another variant of the TWAVRP,

which the authors define as a Stochastic Multi-Period Time Window Assignment Vehicle Routing

Problem (SMTWAVRP). The study is based on a real case provided by a Canadian retailer that

sells and delivers furniture and appliances. Côté et al. (2024) thereby introduce a novel problem by

introducing uncertainty for the number of customers, their locations, demands and service times.

In the first stage of their model, the number of visits and time windows offered per geographical

delivery zone is optimized. After customers have expressed their individual time-window prefer-

ences, the second stage takes the first stage solution as an input and constructs optimized routes to

visit the customers while considering customer preferences. Similarly, Zhan et al. (2021) solve an

integrated routing and appointment scheduling (RAS) problem with stochastic service times, mo-

tivated by the practices of home services. Unlike Spliet and Gabor (2015) and Côté et al. (2024),

the authors restrict their model to time points instead of time windows. Moreover, customers’

preferences are not represented in Zhan et al. (2021)’s model, as opposed to Côté et al. (2024).

2.4 Solution Approaches to VRPs

There are numerous different approaches to solve vehicle routing problems. In the following, some

of the methods that are relevant to this study are presented, namely clustering (2.3.1), a priori

optimization (2.3.2) and different solving algorithms (2.3.3) .

2.4.1 Clustering in Vehicle Routing

In the context of solvingVehicle Routing Problems, this part of the literature review revolves around

the so-called ”cluster-first route-second” method, in which customers are first grouped into feasible

clusters (cluster-first), before establishing efficient routes for each of the clusters (Korayem et al.,

2015, p. 1). In a two-stage solution approach to a VRP, clustering is often used in the first stage.
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Clustering has been found to be effective inmanaging the burden of mathematical complexity in

solving a VRP (Nallusamy et al., 2009, p. 131). Furthermore,Wang et al. (2015, p. 1427) claim both

the clustering of customer and the optimization of vehicle routing to be critical for the successful

implementation of VRP into large-scale logistics networks. Customer clustering could thereby not

only improve the logistics system efficiency, but also reduce the operational cost (Wang et al., 2015,

p. 1428). Further, Rasmussen et al. (2012, p. 599) argue that while clustering may compromise

optimality, it enables the resolution of larger instances of problems. The authors further posit that

run time decreases significantly by adopting clustering before solving the VRPTW.

The business case of a Canadian retailer presented in Côté et al. (2024) provides real-world

evidence for adopting a location-based clustering approach in practical settings. Specifically, the

retailer promotes the strategy of consolidating deliveries to customers residing in the same area

on the same delivery day, thereby minimizing unnecessary travel distances. This partitioning of

customers further allows to assign different time-window options to different sets of customers and

control for number of visits for different delivery zones (Côté et al., 2024). Similarly, Nallusamy

et al. (2009) use a K-means clustering algorithm to group 180 cities to 6 different vehicles in an

optimal manner. Bührmann and Bruwer (2021, p. 39) acknowledge the usefulness of clustering

in vehicle routing in assisting managers to group and assign customers to vehicles. The authors

compare a K-medoids and a K-means clustering approach to solving a the CVRPwithout clustering

and find that the K-medoids algorithm outperforms the more frequently used K-means approach

in solving a CVRP. However, Bührmann and Bruwer (2021, p. 39) find both clustering methods

to provide a more logical grouping of customer locations compared to solving the CVRP without

clustering inputs. While the authors acknowledge several practical advantages of clustering in VRP

such as facilitated planning and assignment of resources or the allocation of newly added customers

in the distribution network, the study shows that the algorithm used to optimize the routes performs

better in terms of minimizing cost and distance travelled when running the CVRP without prior

clustering of customers. In fact, the authors find that the travel cost increases with the number of

clusters. The reason for that is that clustering, while being beneficial from an operational point of

view, adds an extra constraint to the method and reduces the solution space, thereby leading to a

decrease in performance in terms of cost and distance traveled (Bührmann & Bruwer, 2021, p. 39).

Korayem et al. (2015) describe the clustering phase as a Capacitated Clustering Problem (CCP),
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since clusters have tomaintain the vehicle capacity constraint, with each vehicle serving one cluster,

which is why the authors consider the demand of each customer when clustering. Korayem et al.

(2015) employ a K-means clustering algorithm and acknowledge that it suffers from the possibility

of falling into local minima (Korayem et al., 2015, p. 2). To avoid forming infeasible clusters, the

authors develop two new heuristics. Bruck et al. (2020) develop a Decision Support System (DSS)

to support an Italian multi-utility company facing an AHS problem. The first module of the DSS

implements a Mixed-Integer Linear Program (MILP) with distance inputs received from an Open

Source Routing Machine (OSRM) to generate geographical clusters. Based on the formed clusters,

appointment scheduling and routing are optimized in stages 2 and 3 of the DSS.

When grouping customers into clusters, customers should share common features such as geospa-

tial location, as discussed previously, or demand (Wang et al., 2015, p. 1428). In similar terms, there

are other parameters than the intuitive location by which customers are grouped in academic litera-

ture revolving around vehicle routing. In particular, in the case presented by Beheshti et al. (2015),

the underlying company partitions its customer landscape based on the customers’ value and risk

profile. In Rasmussen et al. (2012), a range of visit clustering schemes are devised for addressing

the HCCSP, each grounded in soft preference constraints.

2.4.2 A Priori Optimization

In an a priori framework, the set of potential clients remains fixed and known, yet each day requires

serving only a subset of these clients. In the a priori optimization problem, the ”master solution”

specifies the solution to any potential instance such that for any arising instance, the customers

are visited in the same order as determined by the master solution, which encompasses the entire

potential client set. This way, a minimal additional travel distance, compared to if a delivery person

had followed the optimal tour specifically tailored to that subset of clients, is ensured (Schalekamp,

2007, p. 1).

Similarly, Campbell and Thomas (2008) define an a priori, or pre-planned route as ”a route

which specifies an ordering of all possible customers that a particular driver may need to visit”

(Campbell & Thomas, 2008, p. 1). The authors assert that many delivery companies have long

used a priori routes to overcome the difficulties caused by the fact that only a subset of their cus-

tomers need to be visited each day. Visser and Savelsbergh (2019, p. 2) support that strategy by
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claiming that maintaining partial routes and schedules facilitates adjustments required by the oc-

currence of demand variations, and that it further enables the control of the number of required

delivery vehicles. Further, the authors observe that, while online grocery retailers face a challenge

in handling variability in daily demand, their customers also exhibit recurring ordering patterns that

express in favorite time slots and delivery days. As an example, Visser and Savelsbergh (2019) fo-

cus on time slot management for online grocery retailers and specifically motivate their study by

the example of Picnic, an online grocery retailer that is based in The Netherlands and operates in

all major city centers of the country (picnic.app/nl/). Picnic strategically plans delivery routes for

each day of the week in advance, covering all customer locations, and allocates time slots to these

routes before orders are placed. During the ordering process, available time slots are managed

based on these pre-established routes. The customers’ selected time slots are incorporated into the

corresponding delivery route associated with the pre-planned route, on which the customers were

assigned to (Visser & Savelsbergh, 2019, pp. 2–3). The authors contend time slot management to

be fairly easy when adopting such an a priori route approach, following pre-planned routes and

skipping locations according to the planned schedule (Visser & Savelsbergh, 2019, p. 3).

Further, Visser and Savelsbergh (2019) identify several more advantages of designing a priori

routes. First, a priori routes integrate customer order patterns, particularly beneficial in urban ar-

eas, enhancing operational efficiency. Second, the elimination (re)optimization after cut-off times

enables extended cut-off times, offering increased customer convenience and earlier fulfillment

center operations. Moreover, a priori routes foster delivery route consistency, enabling drivers to

become familiar with routes, thus improving customer service, especially in densely populated city

centers (Visser & Savelsbergh, 2019, p. 3).

There are two general approaches that can be adopted when using a priori routes: the reop-

timization approach and the skip approach. In the reoptimization approach, delivery routes are

reoptimized after customer demand and a subsequent schedule is known. However, in many cases,

companies may not have the resources to reoptimize on each instance or service day, especially at

larger scale. Nevertheless, these a priori routes provide a good starting point for reoptimization,

in case time and resource availabilities allow for it (Bertsimas et al., 1990; Campbell & Thomas,

2008). Often, companies cannot follow this reoptimization approach, which would intuitively ap-

pear more ideal, as pointed out by Bertsimas et al. (1990, p. 1020), due to the approach being too
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expensive and time consuming, a lack of advance information, or because the company prioritizes

regularity of service (Jaillet, Patrick, 1988, p. 929). This drawback, in turn, gives ground to the

second approach used in a priori optimization, referred to as the skip approach. The skip approach

overcomes the mentioned limitations of reoptimizing delivery routes. It involves pre-planning a

tour through all potential customer locations, regardless of daily demand variations. During exe-

cution, the vehicle follows this predetermined route and its subsequent sequence of customer lo-

cations, skipping customers who do not require service on a particular day (Bertsimas et al., 1990;

Campbell & Thomas, 2008; Jaillet, Patrick, 1988; Visser & Savelsbergh, 2019) .

2.4.3 Solving Algorithms

Solving VRPs is referred to as NP-hard, a classification originating in computational complexity

theory, in brief, meaning that no algorithm is able to solve these problems in polynomial time

(Molina et al., 2020, p. 2). Accordingly, this classification is especially true for extensions of the

basic VRP, such as the CVRP or VRPTW, which add complexity to the problem. Hence, finding

optimal solutions to large-scale problems is not practicable, which justifies the usage of classical

heuristics and sophisticated metaheuristics in order to find solutions of good quality when dealing

with VRPs (Iswari & Asih, 2018; Molina et al., 2020). Bräysy and Gendreau (2005a, p. 105)

highlight the importance of heuristics, asserting their capability to produce high-quality solutions

in limited time. They further constate a trade-off between the run time of a heuristic and its solution

quality. Hence, also considering the high complexity level of problems such as the VRPTW and

its wide applicability, the authors express the importance of finding a compromise in this trade-

off, such that good quality solutions could be produced within a reasonable time scope (Bräysy &

Gendreau, 2005a, p. 105).

Classical Heuristics are characterized by their focused exploration of the solution space, often

yielding high-quality results in reasonable time frames. Additionally, these methods are adaptable

to accommodate various constraints present in real-world scenarios, making them practical choices

for commercial applications (Laporte et al., 2000, p. 286). Classical heuristics can typically be di-

vided into Constructive Heuristics and Improvement Heuristics (Laporte, 2007, p. 814). The first,

also referred to as route construction heuristics, sequentially select nodes or arcs until a viable so-

lution is achieved. Nodes are thereby typically chosen according to a cost minimization criterion,
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while ensuring compliance with constraints such as vehicle capacity and time windows. Zhan et al.

(2021, p. 198) distinguish between the two-stage method, scanning algorithm, C-W saving algo-

rithm, nearest neighbor method and recently inserted method, as different classes of constructive

heuristics. Improvement heuristics iteratively improve a solution by exploring neighboring solu-

tions to the problem (Bräysy & Gendreau, 2005a, p. 109). In Zhan et al. (2021, p. 198)’s algorithm

classification, improved heuristics include the k-opt algorithm and λ-interchange algorithm.

Metaheuristics, unlike classical heuristics, ”allow the exploration of the solution space beyond

the first local minimum encountered” (Laporte, 2007, p. 815). In other words, the emphasis of

such methods lies in the comprehensive exploration of promising regions within the solution space

(Laporte et al., 2000, p. 286). In that, the algorithms even tolerate non-improving and infeasible

intermediate solutions during the search process. At the same time, they incorporate techniques

derived from classical construction and improvement heuristics. As a result, the solution qual-

ity obtained by metaheuristics is usually superior to the solution quality obtained with classical

heuristics (Bräysy & Gendreau, 2005b; Laporte, 2007). However, in the context of the trade-off

between run time and solution quality (Bräysy & Gendreau, 2005a, p. 105), this higher solution

quality of metaheuristics also comes at the price of an increased computing time (Laporte et al.,

2000, p. 286). Laporte (2007) classifies metaheuristics into three categories. The first, referred to

as local search includes Tabu Search (TS) and Adaptive Large Neighbourhood Search (ALNS).

Population search or population-based methods encompass metaheuristic methods such as the Ge-

netic Algorithm (GA) and Particle Swarm Optimization (PSO) and are characterized by solutions

moving between populations with specific evaluation processes. In particular, a GA uses genetic

operations such as mutation and crossover, while PSO adopts elements of swarm behavior, like up-

dating position and velocity in the evaluation (Iswari & Asih, 2018; Laporte, 2007). The third class

Laporte (2007) addresses is referred to as Learning Mechanisms and includes neural networks and

ant colony optimization, which attempt to replicate ants’ trail-marking behavior, thereby favoring

the emergence of efficient paths.

Many advancements have been made towards optimizing and extending some of these meta-

heuristics. For instance, Thangiah et al. (1991) have developed a two-moduledGAnamed ”GIDEON”,

in which the first module performs genetic sectoring, while the second module consists of a local

route optimization. Furthermore, Korayem et al. (2015) study a Grey Wolf Optimizer (GWO), a
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new metaheuristic which draws inspiration from the leadership hierarchy and hunting mechanism

observed in grey wolves. The GWO, extended by K-means (K-GWO), thereby showed better ac-

curacy in solving a CVRP, compared to GAs and PSO. Similarly, Vidal et al. (2013) propose a

Hybrid Genetic Search (HGS) algorithm with adaptive diversity management which addresses a

wide range of VRPTW, thereby outperforming other existing approaches. It combines exploratory

strengths of genetic algorithms with effective local search-based improvement methods and diver-

sity management (Vidal et al., 2013, p. 477). This HGS algorithm is of particular interest for this

thesis, as it serves as the foundation for the route-solving algorithm used.

3 A Case study: A Dutch Car Services Provider

3.1 Problem Description

This thesis introduces a problem that can be projected onto many companies operating in the

AHD/AHS sector. In particular, the study specifically addresses companies in the sector that pro-

vide planned services (AHS). In other words, subjects include companies that provide services that

are characterized by a certain regularity in their occurrence and planning beforehand.

For the ease of applicability and interpretability, the presented solution approaches are con-

structed around a case of a Dutch car services provider. While the company exists, the data used

in this thesis is synthetically generated, of which the generation process is presented in detail in

section 5.3. The company’s main value proposition is the changing of car tires at customers’ home

locations. With that, the provider has a rather static customer landscape, where customers usually

need to be visited twice a year, for putting on winter or summer tires accordingly. Nevertheless,

some new customer dynamics might arise. This thesis, however, focuses on the plannable side of

the company’s operations, i.e. existing, recurring customers, and therefore neglects the arrival of

new customers.

This thesis investigates the impact of employing a priori routes in combination with providing

appointment-day offerings on the planning complexity, route efficiency and customer service of

the company’s operations. In particular, different strategies, including different appointment-day

assignment and subsequent routing strategies are evaluated and assessed by the primary metric of

total expected distance traveled, further addressed in subsection 5.1.
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3.2 Assumptions

First, it is assumed that the company operates a fleet of m vehicles, each with a homogeneous

capacity c, which represents the number of customers a single vehicle can visit, taking into account

the number of tires it can carry. Hence, the company’s final routes encompass c customer locations

in their sequence. The a priori route for a group of customers, however, encompasses a multiple

of these c customers. To be precise, one a priori route includes c × T customers, where T is the

number of appointment-day options given to each customer. The company is assumed to operate

out of one depot location, from which the vehicles are sent out on their routes to customers and

come back to after completing their route. Further, customer locations are known by the company

and static, meaning that no new customers join and no customers drop out of the customer network.

Moreover, a planning period of n days is observed, during which each customer has to be served

once and only once. Further, it is assumed that each customer in the considered customer network

requires a visit within the planning period. Additionally, customers are assumed to be indifferent

between appointment-day offerings. In other words, it is assumed that, given the appointment-

day options displayed to a customer, they are equally likely to choose either of the days for their

appointment. Based on these customer decisions, this thesis considers every possible combination

of customers choosing from the options displayed to them, which is referred to as customer decision

scenarios, but evaluates the route performance on a subset of S randomly drawn scenarios, to allow

for computation in a reasonable amount of time.

Further, it is assumed that one vehicle has to visit c customers within one appointment-day.

Hence, the limiting factor in the planning of vehicle routes is the truck capacity c, not the time

dimension, which is why a CVRP is solved without considering day-specific time windows or

any other temporal constraints. Consequently, only the sequence in which customers are visited

is considered in the final route solution, rather than the specific arrival or departure times at each

customer location. Once the routing decisions are made within the company’s process, customers

are informed about a more narrow, day-specific time frame, in which they can expect to be visited.

This last step, however, goes beyond the final routing decision and is therefore not subject to this

thesis. Similarly, this thesis neglects the stage of order assembly, introduced by (Waßmuth et al.,

2023, p. 802). The reason for that is that this study solely aims at optimizing for the decisions of
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appointment-day assignments and the subsequent routing decision in a two-stage framework.

Given the provided problem description and assumptions, the problem in this study can be

described as a DTWAVRP in the context of a AHS for ordinary, i.e. recurring, plannable, services.

4 Methodology
As a first element of this section, the general design of the decision making process studied in this

thesis is explained. Next, a detailed overview of the different strategies is provided, followed by

a subsection, which introduces the upper and lower bound methods. Finally, the CVRP- & TSP-

solving method employed in this study is presented.

4.1 General Design of the Decision Making Process

The solution approaches in this thesis revolve around a decision making process that is motivated

by Waßmuth et al. (2023, p. 802), Campbell and Savelsbergh (2005, p. 2) and Bruck et al. (2020,

p. 140). The high-level decision-making sequence that can be assumed for this study provides the

frame to the proposed strategies. It is visualized in Figure 3 and is detailed in the following.

Figure 3: AHS decision making process

4.1.1 Decision Stage 1: Assigning Appointment-Day Offerings to Customers

The provider has to first decide which appointment-days should be offered to which group of

customers. Prior to this, customer needs are known by the provider because it usually follows a

strict pattern. This stage involves partitioning customers into groups, motivated by studies such as

Bührmann and Bruwer (2021), Côté et al. (2024), and Nallusamy et al. (2009) and many more,

mentioned in section 2.3.1. The partitioning of customers, further explained in ”Stage 1 Ap-

proaches”, divides customers into groups, in each of which a customer is assigned to the same

set of T appointment-day offerings.
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4.1.2 Decision Stage 2: Establishing Final Routes

During the second stage, after customers chose their appointment day, the provider’s decision con-

sists of designing the final route of a specific vehicle on a given appointment-day. In other words,

the route that will be followed by the technician to visit customers on a given day has to be final-

ized, based on the partitioning of decision stage 1 and the customer decisions. In particular, these

final routes can either be built using the a priori routes’ customer sequence determined in stage 1,

or by reoptimizing and thereby solving a new routing problem with a TSP, two methods which are

further detailed in ”Stage 2 Approaches”.

4.2 Strategy Specifications

Stage 1 Stage 2 Abbreviation

CVRP Skip CVRP-Skip
KmeansTSP Skip KmeansTSP-Skip
CVRP TSP CVRP-TSP
Kmeans TSP Kmeans-TSP

Table 1: Two-stage strategies overview

Based on the decision making process described in the previous section, 4 different strategies

are explored in this study, considering two different methods for stage 1 and two methods for stage

2 of the decision making process. An overview of the different strategy characteristics is provided

by Figure 4 and Table 1. Appendix B provides pseudo-algorithms for the high-level methodology

(Algorithm 1) as well as for each decision stage (Algorithms 2 & 3). In the following, each strategy

is explained in depth.

4.2.1 Stage 1 Approaches

The first stage 1 approach, which is denoted as stage1-CVRP and depicted in Figure 5 (a), partitions

customers by solving a CVRP, comprising all the customers that need to be visited over the planning

period of n days, similar to the route-based clustering approach adopted in Becker (2023). In

solving this CVRP, the capacity parameter, i.e., how many customers are assigned to one a priori

route, is defined by c × T , since customers with the same appointment-day offerings should be

grouped together. This approach is employed in strategiesCVRP-Skip andCVRP-TSP, which differ
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Figure 4: Two-stage strategies visualized

from each other during stage 2. The resulting routes are then fixed to a priori routes, on which

customers have the same appointment-day offerings assigned to. These a priori routes consequently

represent the partitioning of customers and give ground to the customer decision scenarios. In the

fictive scenario of Figure 5, there are 16 customers, represented by the nodes, and one depot. As

described, on each of the a priori routes, shown by the arrows that connect customers and the depot,

customers are offered the same appointment-day, as depicted by the different colors in the nodes.

The second approach in this decision stage is denoted as stage1-Kmeans, visualized in Figure

5 (b), and involves solving a CCP, as suggested by Korayem et al. (2015), by applying a clus-

tering algorithm that partitions the geospatial customer landscape into groups of size c × T . The

advantages of partitioning customers were detailed in section 2.3.1 about clustering literature in

the field of vehicle routing, where sufficient support is provided for using this method in this first

stage of assigning appointment-day options to customers (Bührmann & Bruwer, 2021; Côté et al.,

2024; Nallusamy et al., 2009; Wang et al., 2015). This thesis does not experiment with different

clustering algorithms but applies the K-means algorithm due to its widespread use, ease of im-

plementation, and proven effectiveness in producing good results (Bührmann & Bruwer, 2021;

Korayem et al., 2015; Nallusamy et al., 2009). More specifically, the K-means algorithm em-

ployed in this thesis uses the geospatial information of customer locations and uses the Haversine

distance calculation to create clusters. The Haversine distance determines ”the shortest distance
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between two points on a sphere using their latitudes and longitudes measured along the surface”

(GeeksforGeeks, 2022). The formula for the Haversine distance calculation, which is used for any

distance calculation throughout this study, is provided in Appendix A. Please refer to equation (1)

for determining the number of clusters K in the application of K-means clustering in this study,

where c stands for the vehicle capacity and T denotes the number of appointment-days offered to

each customer. This stage1-Kmeans approach is adopted by the strategies KmeansTSP-Skip and

Kmeans-TSP. While stage 1 ends here for the Kmeans-TSP strategy, a TSP needs to be solved for

each resulting cluster for strategy KmeansTSP-Skip, making it stage1-KmeansTSP. The resulting

routes are then, like in the stage1-CVRP method, fixed to a priori routes, on which each customer

gets the same appointment-day options displayed for each route respectively. Fixing a priori routes

is not required for strategy Kmeans-TSP since the first stage does not solve a routing problem.

number of clusters K =
Number of customers

c× T
(1)

(a) Stage1-CVRP (b) Stage1-Kmeans

Figure 5: Comparison of stage 1 approaches

4.2.2 Customer Decision Scenarios

As mentioned before, in this study, each customer is given the choice to decide between T ap-

pointment days. The customer decision scenarios, previously introduced in section 3.2, represent

various combinations of customers’ appointment-day choices. In each of the scenarios, a customer

chooses exactly one of the offered appointment days. As a consequence, for each group of cus-

tomer resulting from stage 1, each customer decision scenario s ∈ S is considered as an input for
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stage 2. Hence, for each strategy, stage 2 solves one routing problem for each customer decision

scenario respectively, an approach that is motivated by Spliet and Gabor (2015, pp. 379–380).

4.2.3 Stage 2 Approaches

In decision stage 2, this study design differentiates between two approaches, introduced in section

2.3.2 about a priori optimization.

In the first approach, denoted as stage2-Skip approach, based on customers’ choices, customers

are visited on the chosen day of the appointment and skipped otherwise. Hence, the final route that

results from this approach follows the visiting sequence fixed by its respective a priori route, which

is the outcome of stage1-CVRP and stage1-Kmeans-TSP respectively, and skip customers that have

to be visited on the other day accordingly. This stage2-Skipmethod is employed byCVRP-Skip and

KmeansTSP-Skip. The approach is visualized in Figure 6 (a) for the CVRP-Skip strategy. Figure

6 is based on the stage1-CVRP approach depicted in Figure 5 (a). The grey arrows in Figure 6 (a)

represent the remaining, unused paths of the a priori routes fixed in Figure 5 (a), while the colored

arrows show the actual final routes after skipping customers respectively.

(a) Stage2-Skip approach (b) Stage2-TSP approach

Figure 6: Comparison of stage 2 approaches

The second stage2-approach, denoted as stage2-TSP takes on a reoptimization strategy that

is visualized in Figure 6 (b). For the CVRP-TSP strategy, the a priori routes from stage1-CVRP

are reoptimized after customers have decided on their appointment-day by solving a new TSP

for the customers assigned to each day and truck. In the case of strategy Kmeans-TSP, the final

route for each appointment day and truck is determined by solving a TSP based on the clusters

from stage1-Kmeans and the customer decisions. In other words, since choosing an appointment-
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day allows to further assign customers to day/vehicle-specific groups, a new TSP for this specific

group of customers can be solved, which then gives the final route for a given truck on a given day.

This strategy experiments with the observation made by Bertsimas et al. (1990) and Campbell and

Thomas (2008), contending that a priori routes offer a good starting point for reoptimization, given

the necessary resource availability, i.e. mainly computation and time.

4.3 Upper- and Lower Bound

To better understand the results of different strategies, they are presented alongside one upper- and

one lower bound. While the upper bound is expected to show the worst performance at a high

customer service level, the lower bound is expected to display the best performance in minimizing

the total distance traveled at a low customer service level, accordingly.

4.3.1 Upper Bound

As an upper bound with the highest expected distance, a free-choice strategy is adopted, in which

each customer in the full customer landscape for the full planning period of n days is given free

choice over their appointment-day. In other words, for this method, T = n. After having grouped

customers to days, a CVRP is solved for each day with the customers who chose this appointment

day. In each of these CVRPs, the number of vehicles per daymt is given by equation (2):

number of vehiclesmt in Upper Bound CVRP =
Number of customerst

n× c
for t ∈ {1, 2, . . . , n}

(2)

4.3.2 Lower Bound

As a lower bound with the lowest expected distance, a no-choice strategy is adopted, in which

customers have no decision power over the appointment-day they are assigned to. For this, a CVRP

is solved for the full customer landscape and planning period of n days. The capacity, i.e., the

number of vehicles needed, for solving each CVRP is given by equation (3). The total number

of vehicles available is, however, used over the full span of n days, which is why the number of

vehicles needed per appointment-day is again given by equation (2).

number of vehiclesm in Lower Bound CVRP =
Number of customers

c
(3)
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4.4 CVRP & TSP Solving Method

In order to solve the routing problems for each strategy in stages 1 and 2 respectively, this study will

make use of a recently developed open-source Python library named PyVRP (Wouda et al., 2024).

With this package, Wouda et al. (2024) aim to provide flexible implementation and a state of the

art VRP solver for researchers and practitioners (Wouda et al., 2024, p. 1). The solver currently

supports two VRP variants, the CVRP and VRPTW. Its implementation is based on the open-source

Hybrid Genetic Search (HGS) - CVRP implementation, published by Vidal (2022) and extends it by

supporting VRPTW and redesigning it as a highly customizable Python package. The package uses

a variant of Vidal et al. (2013)’s HGS algorithm and consists of a genetic algorithm, a population,

and a local search improvement method (Wouda et al., 2024).

5 Experimental Design
This section is divided into three parts. The first part details the method that is used to evaluate the

performance of strategies in this study. Next, expectations about strategy-specific performances

are addressed in the light of the efficiency, complexity, customer service level trade-off. Finally, a

description of the data and data generation process is provided.

5.1 Strategy Performance Evaluation

This study evaluates and finally compares different strategies in order to gain insights about each

method’s performance, while drawing implications about efficiency, complexity and customer ser-

vice level. In that, it should be specified how the performance of a strategy is measured, in order

to evaluate it next to other methods in a comparative setting. This thesis takes the expected value

of the traveled distance, which is the objective that is to be minimized, for each of the strategies.

In particular, this entails taking the expected total distance of routes over the different customer

decision scenarios, from which the expected value over all different customer location datasets is

taken. For each of the strategies, this further yields the expected value of total distance traveled

for each of the five studied datacases, which are further specified in section 5.3. The mathematical

representation for the expected value for a datacase is provided by equation (4), in which nI rep-

resents the number of datasets i ∈ I included in the datacase. Further, nS represents the number

of customer decision scenarios s ∈ S for each of the datasets, while d stands for the distance of
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a route r ∈ R. Taking the expected value over the five datacases gives the overall solution over

all provinces and dataset sizes. This approach of taking the expected value follows the reasoning

suggested by Schalekamp (2007) , contending that in an a priori framework, the goal was to obtain

a good average solution and with that to optimize for the expected value of the objective.

E[D] =
1

nI

∑
i∈I

(
1

nS

∑
s∈S

(∑
r∈R

dr

))
(4)

5.2 Results Expectations

The comparative analysis of this thesis builds on real-world assumptions and implications about

the individual strategy’s planning complexity, route efficiency and level of customer service. In

other words, the different approaches chosen can vary in different dimensions, of which three will

be explored closely in this study, allowing to draw implications about different advantages and

disadvantages in the implementation of such strategies for specifically AHS companies.

In terms of complexity in determining final routes, the lower bound can be considered the least

complex because it only consists of one stage in which one larger CVRP is solved, without any

customer decisions involved. The upper bound is slightly more complex but still relatively simple,

as it only requires solving one smaller CVRP for each day of the planning period, after customers

have made their appointment-day decisions. At a similar level of complexity, the CVRP-Skip is

considered relatively simple. While it solves the same CVRP as in the lower bound solution, a

small layer of complexity is added by adopting a skip approach as a second stage after incorporat-

ing customer’s decisions. On the third level of complexity, the KmeansTSP-Skip strategy can be

allocated, since it comprises two components in stage 1, solving a K-means algorithm with rather

low complexity and TSPs for each resulting cluster. Hence, it is reasonable to deem it as slightly

more complex than the CVRP-Skip strategy. While both reoptimization strategies CVRP-TSP and

Kmeans-TSP are characterized by a higher complexity than the previously mentioned methods,

the CVRP-TSP is considered the most complex, because solving a CVRP is assumed to be more

computationally expensive than solving a K-means clustering algorithm.

In terms of efficiency, optimality is expected to be compromised in using strategiesCVRP-Skip,

CVRP-TSP, KmeansTSP-Skip and Kmeans-TSP, due to the clustering and overall partitioning done
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in stage 1. However, these two-stage solution approaches may enable solving problems at larger

scale in a reasonable run time (Rasmussen et al., 2012, p. 599). Hence, building on Bührmann and

Bruwer (2021, p. 39), it can be expected that the lower bound outperforms the other methods in

terms of total expected distance traveled. At the same time, the upper bound is expected to yield

the highest total distance, because customers are given more choices, thereby reducing the solution

space of potential routes. Furthermore, the strategies CVRP-TSP and Kmeans-TSP can be expected

to perform better than their respective Skip-approach variant, CVRP-Skip and KmeansTSP-Skip,

respectively, since reoptimizing is considered to be the more ideal solution approach (Bertsimas

et al., 1990, p. 1020).

The lower bound is considered providing the highest level of customer service, given the choice

between the full planning period given to customers. This reasoning builds on the findings of Agatz

et al. (2011), Bühler et al. (2016), Côté et al. (2024), and Zhan et al. (2021), contending that time-

window offerings improve customer service. The strategies CVRP-Skip, CVRP-TSP, KmeansTSP-

Skip and Kmeans-TSP therefore fulfill a lower, but comparable threshold of customer service. The

lowest level of customer service is consequently provided by the upper bound, offering customers

no decision power over their appointment scheduling.

This rationale of how strategies balance the three dimensions is visualized in Figure 7, where

the dimensions are evaluated on a scale from 1 to 5. The higher the score, themore the characteristic

is magnified for the respective strategy or bound.

Figure 7: Balance of complexity, customer service & efficiency by strategy
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5.3 Data

The goal of this section is to explain how synthetic data of customer locations is generated for this

thesis. The overall objective of this task is to generate different scenarios of customer locations that

are as realistic as possible, which will be done by assigning population density related weights to

potential customer locations when randomly generating customer locations. Inspired by Bührmann

and Bruwer (2021)’s approach, using different sets of customer locations allows to reduce bias and

achieve overall more representative performance values when comparing the different solution ap-

proaches. In that, customer locations within The Netherlands are generated in different provinces,

where each province has one designated depot location that is allocated by searching the internet for

appropriate depot locations. An appropriate location, in this context, is a location which is situated

in an industrial park within the respective province. Other requirements to the depot location are

not set, which is why the designation of a depot simply follows an educated guess. It is therefore

assumed that each province has its own depot from which technicians are sent out to customers,

who are located in the same province as the depot. Figure 14 in Appendix A illustrates a sample

customer landscape for the province of Utrecht, featuring 32 customer locations, represented by

the blue dots, spread across a 4-day planning period, considering a single delivery vehicle with a

capacity of c = 8 customers, along with a depot location, represented by the red dot. The pro-

cess adopted in this thesis to generate synthetic datasets of customer locations is described in the

following.

As a first step, postal codes are scraped from nld.postcodebase.com, resulting in 461,947 Dutch

postal codes, in which the first 4 characters are numbers, followed by two letters. These 4-digit

postal codes that are used in The Netherlands, are from here on referred to as PC4 codes. A PC4

code thereby encompasses several of these 6-character zip codes. As a second step, as the objective

of the data generation process is to generate customer locations in a realistic way, the overarching

PC4 postal codes and their population are retrieved from a dataset publicly provided by Statistics

Netherlands (CBS, n.d.). Next, for each PC4, the population density is calculated as follows:

PC4Densityp =
PC4Populationp∑

p∈P
PC4Populationp

for p ∈ P (5)
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In equation (5), one PC4 code is denoted as p, element in the set P of all PC4 codes. Once

the population density is calculated, PC4 codes in the amount of desired customer locations are

randomly drawn with the population density measure as an assigned weight, i.e. probability, from

the subset of PC4 codes for the respective province. In a next step, for each selected PC4 code,

one corresponding 6-character zip code is randomly chosen with equal weight distribution. This

zip code serves as the representative location for one customer. Finally, latitude and longitude co-

ordinates from a publicly available data file are appended for each of the zip codes in the generated

dataset (Yurchak & Casares, 2021).

As a result of the data generation process, 5 different datacases arise. In particular, three differ-

ent datacases of different number of customers, are created for Utrecht, which allows to evaluate

the results on an increasing scale of customer locations, while controlling for the geographical

area. While the Utrecht datacases therefore include 32, 64 and 128 customers, the Overijssel and

South-Holland data comprises 64 customers in each of the datasets. This in turn allows to assess

the different methods for geographical areas with different characteristics, while controlling for the

sample size. Further, for each of the 5 datacases, the random sampling of customer locations is car-

ried out 10 times. As a result, the datacases Utrecht32, Utrecht64, South-Holland64, Overijssel64

and Utrecht128 are obtained with 10 datasets each, amounting to a total of 50 different datasets.

In the Utrecht datasets with 32 customers, it is assumed that 1 vehicle with capacity c = 8 is

used to visit the customer locations within the 4 days. For the datasets with 64 and 128 customers,

2 and 4 vehicles are required on each day respectively.

As each province is characterized by a different size and spread of customer locations, it is im-

portant to interpret results in the light of each datacase. Figure 8 displays density plots representing

the varying data characteristics for datacases Utrecht64, South-Holland64, Overijssel64. Specifi-

cally, it shows the sum of all values in the distance matrix for each dataset of 64 customers, grouped

by province. Overijssel64 (Figure 8 (c)) has the longest distances between entities of the distance

matrices with a mean of 33.72 kilometers, followed by South-Holland64 with a mean distance of

22.54 kilometers (Figure 8 (b)) and Utrecht64 with a mean of 17.19 kilometers (Figure 8 (a)).

As for the mentioned customer decision scenarios, each customer is given T = 2 appointment-

days to choose from, except for the upper bound, for which T = n = 4. In the case of T = 2, for
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(a) Utrecht64 (b) South-Holland64 (c) Overijssel 64

Figure 8: Average distance distributions for datasets with 64 customer by province

each decision scenario, half of the customers chooses the first option, while the other half chooses

the second option. For the upper bound, 1
4
of the customers choose each of the 4 appointment-day

options respectively.

For strategies CVRP-Skip, CVRP-TSP, KmeansTSP-Skip and Kmeans-TSP, there are
(
16
8

)
=

12, 870 different combinations of customers deciding for one of the 2 days offered. To allow for

computation in a reasonable time, 50 randomly drawn scenarios, out of these 12,870 combinations,

are used to extend the datasets. Hence, for each cluster or customer group that results from the first

stage of a strategy, 50 possible scenarios are considered for each dataset. To be able to accurately

compare the results between the methods, the same randomly drawn customer decision scenarios

are used across all 4 strategies. As a result, the 4 different strategies are tested on 2,500 different

instances, across 50 datasets and 50 customer decision scenarios.

For the upper bound strategy, for the scenarios with 32 customers and one vehicle, there are(
32
8

)
= 10, 518, 300 combinations of the 32 customers directly choosing one appointment-day out

of the 4 days available. Accordingly, 50 scenarios are drawn randomly from these combinations.

For datasets with 64 and 128 customers, the random choice is repeated and the sequences randomly

shuffled accordingly, resulting in a set of 50 unique customer decision scenarios. This, again, results

in 2,500 instances, over which the expected value is taken as a overall result of the upper bound.

For the lower bound strategy, no customer decision scenarios are computed, since customers

are given no choice over their appointment-day. Hence, the lower bound strategy is evaluated on

only 50 different instances.
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6 Results
The numeric performance results for each strategy, including the upper and lower bounds, are dis-

played in Table 2. The table reports the expected value of total distance traveled in kilometers

per strategy, combining all final routes that are built for each dataset and customer decision sce-

nario and displays each strategy’s percentage difference in distance compared to the upper bound

method to enhance comparability between strategies. Overall, taking the expected value across all

tested datasets and customer decision scenarios, the best performing strategies, sorted from best to

worst performance, are the CVRP-TSP, CVRP-Skip, followed by the Kmeans-TSP and finally the

KmeansTSP-Skip strategy. The upper- and lower bounds perform as expected, showing the highest

and lowest expected distance traveled, respectively. Section 6.1 compares the results of differ-

ent strategies for datasets with 64 customers. This comparison aims to explore distance-based

differences across provinces and evaluate the performances while controlling for the number of

customers. In section 6.2, the results for only the Utrecht province will be presented, comparing

the performances of final routes across different numbers of customers involved.

Utrecht32 Utrecht64 S-Holland64 Overijssel64 Utrecht128 Overall

CVRP-Skip 299.35 468.42 610.70 800.43 794.20 594.62
(-20.6%) (-18.3%) (-19.0%) (-17.8%) (-14.7%) (-17.6%)

CVRP-TSP 294.20 463.21 603.52 794.84 784.59 588.07
(-22.0%) (-19.2%) (-20.0%) (-18.4%) (-15.7%) (-18.6%)

KmeansTSP-Skip 299.79 494.42 634.40 829.18 827.00 616.96
(-20.5%) (-13.8%) (-15.9%) (-14.9%) (-11.2%) (-14.5%)

Kmeans-TSP 292.17 486.52 621.53 814.34 810.80 605.07
(-22.5%) (-15.2%) (-17.6%) (-16.4%) (-12.9%) (-16.2%)

Upper Bound 377.04 573.56 754.14 974.19 931.14 722.01
Lower Bound 227.60 374.00 491.50 643.80 671.40 481.66

(-39.6%) (-34.8%) (-34.8%) (-33.9%) (-27.9%) (-33.3%)

Table 2: Absolute performances in kilometers and relative performances compared to upper bound

6.1 Comparative Analysis Across Provinces

Figure 9 summarizes the strategy performance results, measured by the total expected distance of

final routes, for the datacases Utrecht64, South-Holland64 and Overijssel64.
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Figure 9: Strategy performances visualized for datasets with 64 customers by province

The results displayed in Figure 9 depict that, on average, the CVRP-TSP strategy performs best

across all provinces for datasets with 64 customers. As a second best strategy, the CVRP-Skip

method outperforms both KmeansTSP-Skip and Kmeans-TSP, among which the Kmeans-TSP is

the better choice in minimizing the expected travel distance. In particular, it is observable from

the result for each province, that with respect to the first stage method, i.e. either stage1-CVRP or

stage1-Kmeans, the reoptimization strategy on average performs better than the Skip approach in

stage 2, which is further explored in more depth in section 6.1.2.

While the relative performance of each strategy remains consistent in the hierarchical order

of performances for the 64 customer cases, it is observable that the expected total travel distance

increases from Utrecht to South-Holland to Overijssel. This pattern likely results from systematic

differences in the distance matrices computed for each dataset across these provinces. In other

words, customer locations are, on average, the most spread out in Overijssel, followed by South-

Holland and Utrecht, as was shown by Figure 8 in section 5.3, therefore naturally resulting in

differences in the total expected travel distance. Building on this, the boxplots of Figure 9 depict that

the spread in the solution values changes depending on the province and the method. In particular,
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the span of values is visibly larger for the South-Holland datasets, compared to the Utrecht cases,

with 64 customers respectively. The impact of distance-related differences between provinces is

further investigated in the following part.

6.1.1 Impact of Distance Ranges on Strategy Performance

Further analysis of province-specific differences in strategy performances reveals that the prob-

ability of a strategy being the best performing method fluctuates with the average distance of a

dataset’s distance matrix, previously addressed in subsection 5.3. Table 3 illustrates this finding

by comparing the best strategies over three different average distance ranges of datasets’ distance

matrices, with a low range of below or equal to 20 kilometers, mid range of between 20 and 30

kilometers, and a large range of beyond 30 kilometers.

Strategies Low Range Mid Range Large Range

CVRP-TSP (%) 85.8% 78.8% 68.8%
Kmeans-TSP (%) 11.2% 18.4% 25.8%
CVRP-SKIP, CVRP-TSP (%) 2.8% 1.0% 4.8%
CVRP-TSP, Kmeans-TSP (%) 0.2% 1.6% 0.6%
CVRP-SKIP, CVRP-TSP, Kmeans-TSP (%) 0.0% 0.2% 0.0%

Total (%) 100% 100% 100%

Table 3: Likelihood different strategies showing the best performance by distance range

Table 3 shows that the likelihood of theCVRP-TSP approach being the best performing strategy

decreases with a higher distance range. At the same time, the likelihood of Kmeans-TSP showing

the best performance increases with an increase in the distance range. Furthermore, there are in-

stances, in which CVRP-Skip and CVRP-TSP share the best performance with an equal total travel

distance on these instances. In these cases, which amount to 1% to 4.8% of the instances with

64 customers, depending on the distance range, reoptimizing the a priori routes by solving a TSP

in stage 2 does not improve the performance of the final routes compared to employing the skip

approach in stage 2. Similarly, in rare instances, the CVRP-TSP and Kmeans-TSP perform equally

well in the expected travel distance. This can either suggest that the first stage outcomes of both

methods, i.e. how customers are partitioned into groups, are equal, or that the outcomes of stage

1 are different but result in the same expected distance in the final route after solving the TSP in

stage 2. Further investigation shows the latter, as none of the instances display the same customer
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grouping for the K-means algorithm as for the CVRP. Additionally, in only one of the 1,500 in-

stances involving 64 customers, the strategies CVRP-Skip, CVRP-TSP and Kmeans-TSP are jointly

the best performing methods.

6.1.2 Impact of Stages on Strategy Performance

To further investigate the performances of different strategies and understand potential root causes

of these differences, examining and comparing differences across stages is crucial. Figure 10 shows

4 scatterplots, each of which visualizes two methods’ resulting distances against each other for

instances of 64 customers. In each of the sub-figures, the blue dots represent the total travel dis-

tances computed for Utrecht64 datasets, while the orange dots display travel distances for South-

Holland64 and the green dots show the results for Overijssel64. The dotted line represents equal

performance of the strategies displayed on both axes.

(a) CVRP-Skip vs. KmeansTSP-Skip (b) CVRP-TSP vs. Kmeans-TSP

(c) CVRP-Skip vs. CVRP-TSP (d) KmeansTSP-Skip vs. Kmeans-TSP

Figure 10: Stage 1 method (a,b) and stage 2 method (c,d) distance comparison for 64 customers

As previously shown in Figures 8 and 9, Figure 10 supports that on average, Utrecht is character-

ized by the highest customer density, showing the lowest results in total distance traveled, followed

by South-Holland and Overijssel. Sub-figures (a) and (b) compare the first stage approach while
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controlling for the second stage approach, and sub-figures (c) and (d) compare the second stage so-

lution approach while controlling for the first stage approach. The scatterplots paint a clear picture

– the plots depicting the first stage comparison between the two skip strategies (CVRP-Skip and

KmeansTSP-Skip) as well as the two TSP strategies (CVRP-TSP and Kmeans-TSP) in sub-figures

(a) and (b), show a much higher spread in the dots than scatterplots (c) and (d), comparing the stage

2 approaches. In other terms, the chosen stage 1 solution approach gives room for much more

improvement than the stage 2 solution approach. To support this observation numerically, Table

4 in Appendix A reports the mean percentage and absolute differences in kilometers of distance

between the strategies compared in the scatterplots.

Moreover, sub-figures (c) and (d) clearly illustrate that the stage2-TSP approach consistently

matches or outperforms the performance of the stage2-Skip approach across all datasets, when both

strategies are controlled for the same stage 1 approach. This is evident from the dots consistently

staying on, but mostly below, the dotted line of equal performance, indicating that the stage2-TSP

approach always yields a lower or equal total distance compared to the stage2-Skip approach.

Figure 11 provides a comparison of solving stage1-CVRP and stage1-KmeansTSP on a dataset

with 64 customers located in Overijssel, represented by the dots, and one depot, represented by the

red star. It illustrates that the route-based partitioning shown in Figure 11 (a), obtained via solving

stage1-CVRP, leads to a different grouping outcome, compared to solving the stage1-KmeansTSP

approach, depicted in Figure 11 (b). Further inspection reveals that in none of the instances, the

CVRP and K-means algorithms grouped customers in the same way. For the displayed instance

in Figure 11, with the same chosen customer decision scenario for both strategies respectively,

the KmeansTSP-Skip approach outperforms the CVRP-Skip approach by 80 kilometers. In par-

ticular, the total distance for CVRP-Skip is of 865 kilometers, for CVRP-TSP of 859 kilometers,

for KmeansTSP-Skip of 785 kilometers and for Kmeans-TSP of 774 kilometers. In other words,

both approaches involving stage1-Kmeans outperform the approaches using stage1-CVRP in that

instance, which underscores the importance of the stage1 approach as suggested by Figure 10.

Further analysis reveals that the performance of a strategy not only depends on how well the

chosen approach in stage 1 groups customers together, but also on how convenient the respective

customer decision scenario is for combining the customers in stage 2, based on the a priori routes.

Hence, assessing performance by the expected value across customer decision scenarios. As an
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example, for the instance visualized in Figure 11, in 37 of the 50 customer decision scenarios, the

KmeansTSP-Skip approach performs better than the CVRP-Skip approach, which in turn performs

better in the other 13 customer decision scenarios.

(a) stage1-CVRP (b) stage1-KmeansTSP

Figure 11: Difference between stage1-CVRP and stage1-KmeansTSP on an Overijssel dataset

6.2 Comparative Analysis Across Different Dataset Sizes

Additional insight into the performance of different strategies is provided by comparing the strategy

performances on the province of Utrecht when increasing the number of customers to visit. In that,

the performances for each strategy, including the upper- and lower bound, on the datasets for 32,

64 and 128 customers in Utrecht are displayed in Figure 12. In this comparative analysis, not

the total expected travel distance over each instance is computed as in Figure 9 and Table 2, but

the mean travel distance per truck per appointment-day, as it is of higher interest for this analysis

by ensuring comparability between datasets with a different number of customers. Hence, the

distances displayed are the distances that one truck, on average, travels to visit all customers on

one route. The expected distances matching Figure 12, including the percentage decreases of each

strategy’s expected distance traveled compared to the upper bound result, are reported in Table 5

in Appendix A.

The best performance by decreasing order follows the sequence of CVRP-TSP, CVRP-Skip,

Kmeans-TSP and KmeansTSP-Skip for the cases with 64 customers, as it was detailed in subsec-

tion 6.1. This hierarchy, however, changes with an increase and decrease in size of the dataset. For
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Figure 12: Expected distance per day/truck for Utrecht32, Utrecht64 and Utrecht128 by strategy

cases with 32 customers, the Kmeans-TSP shows the best performance, followed by the CVRP-

TSP approach. The third and fourth best strategies are the CVRP-Skip and KmeansTSP-Skip re-

spectively. As for increasing the number of customers to 128, the best performance is again given

by the CVRP-TSP approach, closely followed by the CVRP-Skip approach. The third and fourth

best strategies for 128 customers are the Kmeans-TSP and KmeansTSP-Skip. These findings sug-

gest that the performance of each individual strategy relative to the others highly depends on the

number of customers involved in the studied instance. The results moreover suggest that, with

an increasing number of customers, the stage 2 approach becomes less important compared to the

stage 1 method, in which the CVRP solution approach appears to yield the best results. In par-

ticular, since in both scenarios of 64 and 128 customers, the two best performing strategies adopt

a stage1-CVRP approach, the stage 1 method seems to gain importance the more customers are

involved in the dataset. In particular, the results point to stage1-CVRP as the better choice with an

increasing amount of customers.

Moreover, another insight provided by Figure 12 is that, across all strategies, the average dis-

tance per route decreases with every incremental increase in the number of customers for theUtrecht
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area. This further suggests that customers can be grouped more efficiently with a higher number

of customers. This is also supported by the decreasing size of boxes in Figure 12, illustrating that

the expected travel distance per route becomes more consistent across all instances as the number

of customers increases.

(a) Utrecht32 (b) Utrecht64 (c) Utrecht128

Figure 13: K-means algorithm on Utrecht datasets with 32, 64 and 128 customers

Figure 13 visualizes this by the example of applying the K-means algorithm on a dataset for

Utrecht with 32 customers (sub-figure (a)), 64 customers (sub-figure (b)) and 128 customers (sub-

figure (c)), respectively. In each plot of Figure 13, differently colored dots represent distinct clusters

of 16 customer locations as an outcome of stage 1. Figure 13 showcases that the average within-

cluster distance decreases with an increase in the number of customers, supporting the observation

of overall decreasing travel distances per day/truck, demonstrated by Figure 12. In fact, in datasets

with 32 customers, the average distances between customers within clusters are of 11.2 kilometers,

while the average distance reduces to 10.44 kilometers and 7.58 kilometers for datasets with 64 and

128 customers, accordingly.

7 Discussion
In this section, the results are discussed, providing both managerial implications and academic

embedding. After recommendations are offered, the study’s limitations are detailed, followed by

ideas for future research.

7.1 Conclusions

This study provides valuable insights into the performance of different two-stage strategies. In the

first stage, the strategies experiment with two different approaches with which the provider groups
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customers together, with the aim of assigning appointment-day offerings to each group. In stage

2, the final routes have to be determined by the company, where either a skip- or reoptimization

approach is adopted. Overall, the results show that the best performing strategies, in decreasing

order, are CVRP-TSP, CVRP-Skip, Kmeans-TSP, and KmeansTSP-Skip, thereby in part contradict-

ing the expectations regarding efficiency formulated in section 5.2. With that, the results highlight

the importance of the approach chosen in stage 1, in which CVRP-based strategies generally out-

perform strategies that use the K-means algorithms, which is in line with Bührmann and Bruwer

(2021) and Rasmussen et al. (2012), contending that clustering may reduce routing performance.

These insights, however, are to be set in a certain context. While the dominance of CVRP-

TSP is generally high, it shrinks with a higher spread of customer locations. In other words, the

more customers are spread out on a geographic space, the better stage1-Kmeans performs relative to

stage1-CVRP in grouping customers. Combining this insight with the observation that theKmeans-

TSP strategy outperforms the other strategies on Utrecht datasets with 32 customers suggests that

this strategy can be a viable, less computationally demanding (Nallusamy et al., 2009, p. 131),

alternative to the CVRP-TSP strategy specifically for a smaller number of customers and customer

landscapes with a relatively low customer density. Hence, the characteristics of customer locations

are found to play a pivotal role in deciding uponwhich strategy to choose, which is why one strategy

cannot be determined as the inherently superior strategy. This is further the case because customer

decision scenarios strongly impact a strategy’s performance.

While the first-stage method is found to have a substantial impact on the overall performance

of a strategy, the second-stage method, which decides upon whether to apply the skip approach

or to reoptimize by solving TSPs for each final route, offers less potential for improvement. Gen-

erally speaking, the stage2-TSP approach always matches or slightly outperforms the stage2-Skip

approach, thereby providing support for Bertsimas et al. (1990, p. 1020). When controlling for the

stage 1 method, the expected impact of reoptimization ranges between roughly 1% and 2% (please

refer to Table 4 in Appendix A). This suggests that AHS providers should streamline their efforts

into choosing the better stage 1 method, appropriate to their situation, rather than reoptimizing

routes, since the latter involves vast computational resources and yields little to no benefit to the

final route’s total distance, which is in line with the reasoning presented in Schalekamp (2007, p. 1)

Another insight provided by this study is that across all strategies, more efficient routes are
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produced with an increasing number of customers involved in the instance. In particular, this study

finds that the first-stage approaches are able to group customers into more efficient clusters when

more customers are involved in each cluster. In support of this finding, Bührmann and Bruwer

(2021) find that travel cost increases with the number of clusters. As a consequence, this study

demonstrates that introducing a higher number of customers to each cluster or group of customers,

on average, leads to efficiency gains for each final route and more robustness in resulting distances.

This study additionally contributes to academic literature by offering support for the trade-

off between customer-service level and routing efficiency, previously pointed out by Agatz et al.

(2011), Bühler et al. (2016), Côté et al. (2024), Visser and Savelsbergh (2019), and Zhan et al.

(2021). In that, the results indicate that a higher level of customer service, represented by more

appointment-day choices offered to customers, leads to a decrease in routing performance, as sup-

ported by the performance results of the upper- and lower bound.

7.2 Recommendations

To translate these conclusions into managerial implications, a nuanced perspective on companies’

decision-making should be offered. AHS providers that aim to strike a balance between efficiency,

complexity and customer service should acknowledge that a higher customer service promotes in-

efficiencies in the routing of vehicles, as reflected by the (free-choice) upper bound strategy re-

sults. Hence, for their first-stage decision making, companies should choose a limited number of

appointment-day offerings to balance the efficiency - customer service trade-off.

Given a reasonable level of customer service, such as the case of two appointment-day offerings

assumed in this thesis, companies are overall well advised with grouping customers with a CVRP,

as this approach overall outperforms K-means-based methods in this study, particularly in scenarios

with a larger number of densely located customers. However, if a company’s customer landscape is

rather small and highly spread out, K-means based strategies grow tomore competitive alternatives.

AHS providers are further advised to minimize their efforts on second-stage reoptimization, as

it offers minimal route efficiency improvements, and instead prioritize selecting the optimal first-

stage grouping method. Companies should therefore experiment with the stage2-Skip approach on

a priori routes, as it generally provides competitive results at low planning complexity.

Relative to their planning horizon, providers should further include a large number of customers
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into the same planning period, as it enhances first-stage grouping efficiency and overall robustness

in minimizing the total distance traveled.

7.3 Limitations & Future Research

This study is subject to limitations. First, restrictions are imposed by computational limitations. In

order to obtain results in a reasonable amount of time, only a limited number of datacases, datasets

and customer decision scenarios are considered in this thesis, thereby potentially compromising the

reliability of results.

Another limitation of this thesis is the usage of the Haversine distance. While being a simplify-

ing assumption for this study, it can have substantial drawbacks in its interpretation when applying

the strategies to real-world cases, since it does not consider any road infrastructure but returns the

shortest distance between two points using latitude and longitude coordinates. As a consequence,

the real-world application of the studied strategies could yield different results than the ones pre-

sented in this thesis. Hence, in future research efforts, this study could be extended to a setting, in

which existing route infrastructure and potentially traffic information are considered.

Additionally, future research could be conducted on experimenting with different clustering

algorithms for the proposed strategies KmeansTSP-Skip and Kmeans-TSP. Similar to Bührmann

and Bruwer (2021), where K-medoids yields better results than K-means, improvements to the

cluster-based strategies in this study could be made by employing a different clustering algorithm.

This study only takes the location of customers as information for their grouping in the first stage

of a strategy into account. Future research could incorporate other aspects useful to the grouping of

customers, such as value- and risk profiles, as suggested by Beheshti et al. (2015, p. 404), to create

strategies which are more robust to customer decisions. Additionally, leveraging historical data to

predict customer preferences could make first-stage grouping decisions more accurate and further

boost the efficiency of final routes.

Finally, future studies could extend this thesis by combining customer locations across provinces

and by consideringmultiple depot locations. Considering that most AHS providers, just as the com-

pany studied in this thesis, operate across a larger geographic area than the ones assumed in this

work, incorporating this extension would most likely provide a more representative scenario, in

which differences between the performances of strategies may become more important.
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Appendix A

Methodology

Haversine distance calculation (GeeksforGeeks, 2022):

d = 2r sin−1

(√
sin2

(
ϕ2 − ϕ1

2

)
+ cos(ϕ1) cos(ϕ2) sin2

(
λ2 − λ1

2

))

where:

d : Distance between the two points

r : Radius of the sphere

ϕ1, ϕ2 : Latitudes of point 1 and point 2

λ1, λ2 : Longitudes of point 1 and point 2

Data

Figure 14: Synthetic depot & 32 customer locations in the Utrecht province

Figure 14 shows a sample dataset of 32 customers, represented by the blue dots, and one depot,

shown in red, located in the province of Utrecht. In this datacase (Utrecht32), 1 vehicle with

capacity c = 8 is required to visit all customers across the full planning period of 4 days.
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Results

Mean % Difference Absolute Difference (km)

CVRP-Skip vs. KmeansTSP-Skip −4.05% −26.15
CVRP-TSP vs. Kmeans-TSP −3.26% −20.27
CVRP-Skip vs. CVRP-TSP 1.02% 5.99
KmeansTSP-Skip vs. Kmeans-TSP 1.84% 11.87

Table 4: Comparison of the mean percentage difference and the absolute difference in total distance
traveled for instances of 64 customers

Utrecht32 Utrecht64 Utrecht128

CVRP-Skip 74.83 58.55 49.64
(-20.6%) (-18.3%) (-14.7%)

CVRP-TSP 73.55 57.90 49.04
(-22.0%) (-19.2%) (-15.7%)

KmeansTSP-Skip 74.95 61.80 51.69
(-20.5%) (-13.8%) (-11.2%)

Kmeans-TSP 73.04 60.82 50.68
(-22.5%) (-15.2%) (-12.9%)

Upper Bound 94.26 71.70 58.20
Lower Bound 56.90 46.75 41.96

(-39.6%) (-34.8%) (-27.9%)

Table 5: Comparison of distances per route in kilometers for each strategy across Utrecht32,
Utrecht64 and Utrecht128, including their relative performance compared to the upper bound
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Appendix B

Algorithm 1 High-Level Pseudo Code of Two-Stage Strategies
1: for c in data_cases do
2: generate different customer location datasets
3: store generated datasets as datasets[c]
4: for i in datasets[c] do
5: for a in stage1_approaches do
6: solve stage 1
7: store as solution[c][i][a] in stage1_solutions
8: for solution in stage1_solutions[a] do
9: for s in customer_decision_scenarios do
10: for d in scenario s decisions do
11: create split datasets as datasets_split[c][i][a][s][d]
12: for j in datasets_split[c][i][a][s][d] do
13: for b in stage2_approaches do
14: solve stage 2
15: store as solution[c][i][a][s][d][j][b] in stage2_solutions
16: end for
17: end for
18: end for
19: end for
20: end for
21: end for
22: end for
23: end for
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Algorithm 2 Stage 1 Pseudo Code
1: for c in data_cases do
2: for i in datasets[c] do
3: solve CVRP with capacity (c× T )
4: store as solution in CVRP_solutions[c][i]
5:
6: apply K-means with cluster of equal size (c× T )
7: store as cluster in Kmeans_solutions[c][i]
8: for k in Kmeans_solutions[c][i] do
9: solve TSP
10: store as solution in KmeansTSP_solutions[c][i][k]
11: end for
12: end for
13: end for
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Algorithm 3 Stage 2 Pseudo Code
1: for r in CVRP_solutions[c][i] do
2: for s in customer_decision_scenarios do
3: for d in scenario s decisions do
4: split a priori routes as split_datasets
5: for j in split_datasets do
6: total distance =

∑
z∈Z d[rz][rz+1] following sequence in r, for z in j

7: save total distance as CVRP_Skip_results[c][i][s][d][j]
8:
9: solve TSP
10: save total distance as CVRP_TSP_results[c][i][s][d][j]
11: end for
12: end for
13: end for
14: end for
15: for r in KmeansTSP_solutions do
16: for s in customer_decision_scenarios do
17: for d in scenario s decisions do
18: split a priori routes as split_cluster_datasets
19: for j in split_cluster_datasets do
20: total distance =

∑
z∈Z d[rz][rz+1] following sequence in r, for z in j

21: save total distance as KmeansTSP_Skip_results[c][i][s][d][j]
22:
23: solve TSP
24: save total distance as Kmeans_TSP_results[c][i][s][d][j]
25: end for
26: end for
27: end for
28: end for
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